Micro Textures
Akin to embossing, micro textures are produced by rolling coiled sheet metal through a set of work rolls to impart a specific surface pattern.

Advantages
Since cold rolling mills run at several hundred feet per minute, large quantities can be processed quickly at a reasonable cost. Repeatability of the surface pattern is excellent. Provided the producer executes proper process controls on the incoming material, as well as during the rolling process, uniformity from batch to batch can be achieved.

Disadvantages
Small quantities are not practical on production-oriented rolling equipment.

Contrarian Micro Textures, by Rigidized® Metals Corporation, manufactures several types of rolled-in metal finishes for architecture and supports small quantities by maintaining an inventory of popular sizes and adding small custom orders to large runs.
ABRASIVE POLISHED STAINLESS STEEL
This is undoubtedly the most widely used technique for finishing stainless steel. Industry standard finishes include #3, #4, and #6 POLISH, HAIRLINE, and VIBRATION.

Abrasive finishes have microscopic fissures created by the tearing action of the rotary abrasive belts. These voids allow contaminants like chlorides (salt molecules) to take hold, which can promote pitting corrosion. They are not the best choice in severe environments.

Shape distortion, caused by heat generated in the polishing process, is often an issue with abrasive polished finishes, particularly 20 gauge and lighter material. However, InvariGrain has a shape correction step that alleviates this problem.

#3 POLISH STAINLESS STEEL: Linear grit pattern, typically produced with a 100 grit abrasive belt.

Advantages
These are economical abrasive finishes, available from a variety of sources. Weld areas can be readily repaired with the use of hand-held abrasive equipment.

Disadvantages
The vast majority of producers do not follow sufficiently restrictive process standards to guarantee finish uniformity from batch to batch. Further, common belt replacement practices do not guarantee consistency within a coil. Therefore, visual consistency from panel to panel cannot be assured. However, our InvariGrain finish, which conforms to a #4 Polish designation, is designed to exhibit excellent uniformity from one process run to the next, which results in visually consistent panels.

#4 POLISH STAINLESS STEEL: Linear grit pattern, smoother than #3.

Advantages
It is easier to blend this type of finish after weld repairs are made, particularly the Hairline version. The smoother surface aspect and the more linear appearance of Hairline are often desirable design elements.

Disadvantages
These stainless steel finishes are incrementally more expensive than the more popular #3 or #4 alternatives. Similar issues exist with respect to microscopic corrosion sites, however, smoother is better.

#6 POLISH STAINLESS STEEL: An additional brushing operation (traditionally with Tampico brushes) is applied to #4 to create a smoother, somewhat less reflective finish. Contrarian's #6 finish replicates this effect with modern technology, creating a less reflective linear grain finish that is easier to clean.

HAIRLINE STAINLESS STEEL: Similar to a #6, having elongated grit lines. This finish is quite popular in Japan.

Advantages
These stainless steel finishes are incrementally more expensive than the more popular #3 or #4 alternatives.

Disadvantages
These stainless steel finishes are incrementally more expensive than the more popular #3 or #4 alternatives. Similar issues exist with respect to microscopic corrosion sites, however, smoother is better.

VIBRATION STAINLESS STEEL: (Sometimes referred to as Angel Hair or Non-Directional Satin) Multidirectional abrasive stainless steel finish with random grit lines.

Advantages
Incidental scratches that occur over the life of the panel tend to blend into the random scratch pattern.

Disadvantages
This finishing technique is rather expensive, since processing is slow and often labor intensive. Fine texture versions of Vibration finishes usually require a more costly, bright annealed stainless steel substrate. Fabrication shops, as well as many suppliers, produce this finish by hand, resulting in a high degree of surface variability. Our InvariWisp finish, however, is applied by a numerically-controlled head that delivers excellent uniformity.
CHEMICALLY-ETCHED STAINLESS STEEL
This process involves the use of chemical solutions to change the surface aspect of the material. Unlike electropolishing (see below), which results in a smooth surface, chemical etching is done without involving electric current and results in a dull, textured surface.

Advantages
Numerous patterns or designs can be achieved by masking off certain areas of a sheet with relatively high reflectivity and etching the exposed areas to reduce reflectivity.

Disadvantages
The process can be rather costly.

COLORIZED STAINLESS STEEL, TITANIUM & ALUMINUM
Stainless steel and titanium, as well as aluminum, can be readily colorized through a variety of processes, which are outlined below:

• **ANODIZING**: Typically performed on aluminum to improve corrosion resistance, this process can also add color to aluminum, stainless steel and titanium. Anodizing relies upon the combination of chemicals and electric current to produce a hardened surface coating that is integral to the base metal. Colorizing stainless steel in this fashion is customarily done with a patented process developed by Inco®.

Advantages
Corrosion resistance is improved. In the case of aluminum, the coating will resist the appearance of a chalky oxide for a number of years. Colors are UV-resistant and therefore long lasting.

Disadvantages
The anodizing process is quite expensive. In the case of aluminum, the anodized layer is not immune to atmospheric corrosion. Combining initial costs with the probability of replacement in 30 years or so may well create an unfavorable life cycle cost for this option. Color choices are limited and have a translucent quality.

• **PAINTED METALS**: Paint can add years to the lives of less noble metals like galvanized steel and aluminum. It is an inexpensive way to introduce color to a building system. However, even the best of paint systems will deteriorate over time, suggesting maintenance or replacement shortly after the 20-year mark.

Our philosophy is to design with high performance metals that will last the useful life of a building with little or no maintenance. Uncoated stainless steel and titanium are in keeping with this philosophy. There are exceptions, however. If the panel system must be a certain color (other than the range of silvers and grays that natural high performance metals provide), and the budget will not allow a more robust colorizing process, and the environment puts galvanized and aluminum at a high risk of failure in fewer than 30 years, consideration should be given to painted stainless steel. It can be readily painted on a coil coating line with special process steps that are required to achieve proper coating adhesion.

Advantages
A wide array of color choices can be economically achieved. The functional life of less noble metals like galvanized steel and aluminum is extended when a coat of paint is added.

Disadvantages
Paint systems are subject to deterioration.
COLORIZED STAINLESS STEEL, TITANIUM & ALUMINUM (continued)

- **VAPOR DEPOSITION COLORIZED STAINLESS STEEL:** Often referred to as sputtering, this process involves coating stainless steel and titanium (in a vacuum) with inorganic material, such as titanium nitrides and other ceramics. Contrarian Micro Textures offers stainless steel and titanium that are colorized using this method.

Advantages
Harder, more abrasion resistant layers can be achieved compared to those achieved by anodizing. These finishes are very resistant to ultraviolet light and can substantially outlast anodized, paint and powder coat systems. Decorative metal sheets that have a vapor deposition layer applied are often used for elevators and column covers where pedestrian traffic can be expected.

Disadvantages
This process is rather costly. Crazing of the surface during severe forming can occur. Color matching is not perfect, but substantially better than that of anodized surfaces. Color choices are limited and have a translucent quality. Additionally, corrosion resistance is compromised due to changes in the chromium oxide layer, caused by the colorizing process.

EMBOSSED STAINLESS STEEL
Embossing involves imparting a texture into the sheet metal surface through the use of work rolls under pressure. Only one side of the sheet is subjected to a textured roll in some cases. However, in other cases, the work rolls are a male and female set that impart a texture or pattern to both sides of the material.

Advantages
Deeply defined, uniform patterns are possible. Material hardness is often increased, adding a degree of abrasion resistance.

Disadvantages
Severe forming can be difficult with material that has been substantially hardened. Deeply textured surfaces can provide sites for retention of dirt and corrosives, like salt residue.

MICRO-EMBOSSED STAINLESS STEEL
Micro-embossing involves imparting a hydrophobic texture into the sheet metal surface through the use of work rolls under pressure. Finishes from low glare to very bright can be achieved through this process. InvariMatte®, InvariLux®, and Invari-Tone are examples of these finishes in stainless steel and titanium.

Advantages
Maximum uniformity, flatness and dirt resistance are to be expected. The self-cleaning nature of these finishes preserves 100% of the solar reflectance (which can be as high as 94%) over time.

Disadvantages
These finishes are moderately more expensive than standard mill finished materials.
ELECTROPLATED & ELECTROPOLISHED METALS

These processes differ in that electroplating adds metal to, and electropolishing removes metal from, the surface of the material. We group them together as their application is limited in architecture, and where their use is practical, the end result is similar. Most operations of these types are done on modest sized parts for industrial applications. Electroplating involves depositing a thin film of metal onto the material surface through the use of electric current in a metal-rich solution. Electropolishing is a process whereby a thin layer of metal is removed, resulting in a very smooth, mirror-like surface.

Advantages
With electroplating, the process of coating metal with a different metal is less costly than using bi-metal (produced by two metal coils that are rolled together under pressure, creating a two-ply material). The visual appearance of a part can be significantly changed, depending upon what plating metal is used. Electropolishing creates a highly reflective surface that is quite uniform.

Disadvantages
The application of these processes is generally limited to small parts. To the extent sheets that can be fabricated into panels can be electroplated or electropolished, there are often better alternatives. Vapor deposition colorizing offers more visual options at about the same cost as electroplating. Buffing is less costly than either process, so long as a silver mirror is the objective.

METAL DIPPED PRODUCTS

Often referred to as hot dipping, the most popular application of this technique is galvanizing. Carbon steel coils are unwound and passed through a bath of molten zinc to make galvanized steel. This is an economical way to extend the life of carbon steel with the anodic protection provided by the zinc. Stainless steel can also be coated with zinc to create a spangled, weathered appearance without the frailty of carbon steel. More commonly in this country, stainless steel is coated with a mixture of tin and zinc to create a dull, weathered appearance.

Advantages
An aged, variable, dull appearance is achieved.

Disadvantages
Dipped products can exhibit surface finish variability. Another, less costly, alternative is low-gloss, matte textured stainless steel. Further, lead-bearing versions carry the risk of environmental contamination.

PERFORATED METAL SHEETS

Metals can be perforated, allowing for the exchange of air and light. This process involves feeding sheet material, usually in coil, through a large stamping press that punches a hole pattern in the material.

Advantages
Perforated panels can be an economical alternative to louvers, provided drainage behind the panels can occur, as in a rain screen concept. Sun screens can be made out of high performance metal as opposed to degradable materials.

Disadvantages
Light scratching can be expected from slugs that are stamped out and ride on the surface of the metal during the process. While it is often possible to finish sheets after perforating, the hole dimensions and shapes can be slightly altered. If cupping of the punched holes and bun cannot be tolerated, perforations can be cut by means of laser or water jet cutting. Contrarian Micro Textures can supply a variety of perforated patterns in a number of finishes in stainless steel and titanium.
PRE-WEATHERED SHEET METAL FINISHES
This process involves the chemical treatment of reactive metals like zinc and copper to approximate the effect of atmospheric weathering.

Advantages
A mature appearance is possible. Corrosion resistance is improved somewhat. In the case of zinc that has been preweathered, a patina layer is quickly formed that erodes more slowly than zinc oxide. An even more durable surface occurs on zinc when exposed to the atmosphere and gradually draws carbon dioxide, converting the oxide layer to zinc carbonate over time. This carbonate layer is more resistant to corrosion than zinc oxide. A similar effect occurs in red metals. However, a substantial increase in the longevity of panels that have been pre-weathered should not be expected. The untreated metals will catch up to the same level of corrosion resistance in due time.

Disadvantages
The pre-weathering process costs money. If the building owner is patient, the same visual appearance will be realized in time. Zinc will patina more rapidly than copper, resulting in a mature appearance in just a few years in moderate climates.

BUFFED OR MIRROR FINISHED STAINLESS STEEL
- #8 Finish Stainless Steel: The industry standard for a highly reflective, mirror-like, directional finish produced by buffing wheels with abrasive compounds.

Advantages
Shatter-proof mirror panels can be achieved. Corrosion resistance is improved since the surface is quite smooth, limiting the opportunity for contaminants to react with the material.

Disadvantages
Typical processing leaves a degree of visible buff lines on the surface. If superb image clarity is required, we recommend #8 Mirror finish, which has additional buffing that results in a surface free of visible buff lines.
THERMALLY-SPRAYED METALS
This process involves spraying molten metallics or ceramics onto the surface of metal. While this is traditionally done to improve wear resistance on machinery parts, certain cosmetic aspects can be achieved.

Advantages
Deep textures can be realized. Caution should be exercised in the application of deep textured metals in corrosive environments like seacoasts and in areas in close proximity to deicing salt use. Abrasion resistance can be improved in the case of ceramics.

Disadvantages
The process is quite costly. In the case of metallics, particularly stainless steel sprayed onto a stainless substrate, there is a significant reduction in corrosion resistance (caused by carbide precipitation that occurs as the metal cools). Passivating (acid etching) the work piece will correct this problem, but cosmetics will be affected.

Visual variability is to be expected within a panel as well as from one panel to the next.

This process is best suited on heavier gauges (greater than 1/8” thick) in order to counter shape distortion. Since the coatings can often be brittle, this process generally lends itself to pre-formed panels. If deep textures are desired, our recommendation is to specify embossed or media blasted finishes. Contrarian Micro Textures can provide samples of media blasted finishes as required.

MEDIA BLASTED METALS
A variety of tones and textures can be achieved through media blasting with air pressure. This is often done in the fabrication shop on finished panels. Glass bead-blasted stainless steel is among the most popular architectural metal finishes.

Advantages
Numerous finish aspects can be created for a custom appearance. Areas can be masked off, creating two different textures in the same panel.

Disadvantages
Shape distortion usually occurs on panels that are media blasted (the higher the air pressure and mass of the medium, the greater the potential for distortion). This is also true of flat sheets that are blasted prior to fabrication. However, if the sheets are properly flattened after blasting, the fabricator has every opportunity to produce a distortion-free panel.

Media blasting presents a certain degree of surface variability. The best opportunity to achieve visual uniformity is in pre-blasting sheets prior to fabrication. It is easier to limit the variables in a sheet finishing environment as opposed to blasting the various surfaces of finished panels. While it is true that post fabrication blasting affords an easy way to dress over weld repairs, the issue of shape distortion makes this unadvisable. We believe it is better to address weld repairs through chemical means or use mechanical joinery in visually sensitive areas.

Finishing metals in this method can be rather costly, given the labor component and consumption of media. Contrarian Micro Textures can supply pre-blasted sheets in a variety of textures, including a peen-hardened surface that is extraordinarily abrasion resistant. All of our media blasted finishes are shape-corrected, allowing for ease of fabrication and distortion-free panels.