Enhanced Surfaces for Petrochemical

The petrochemical process industry can benefit greatly from the use of Vipertex® enhanced surfaces. In some applications, heat transfer is enhanced fivefold compared to smooth tubing. While increased efficiency is a desirable benefit in itself, there is a powerful argument to be made to retrofit bottlenecked operations with a more efficient heat exchanger that does not require additional space to install. The economic value to the end user is extraordinary.

For new installations, Vipertex® affords the opportunity to build a higher capacity unit. Another way to consider this is that a unit of given capacity will be smaller if constructed using Vipertex® materials. Building a smaller unit in the first place can be economically compelling in terms of reduced materials, reduced space required, and less project complexity.

Potential benefits of Vipertex® in petrochemical applications include:

- Bottleneck resolution
- Higher capacity operations
- Smaller, less expensive heat exchanger installations
- Readily enhanced stainless steel (austenitic, duplex and ferritic alloys) and titanium for corrosive applications

Vipertex® enhanced surfaces are rolled in coil form, promoting repeatability, volume production and cost efficiency. These surfaces can then be transformed into tube or used in a flat configuration to incorporate into heat exchanger designs with greater flexibility and scalability, helping you optimize a solution for your project.

Whether you are retrofitting an existing installation or building new, let us help you determine the economic value of using Vipertex®.
Pressure Applications
Vipertex® tubes can be applied to exchangers operating at various pressure levels. Different alloy systems, wall thicknesses and processing specifications contribute to the achievement of various pressure ratings.

Burst and collapse tests of welded Vipertex® tubes confirm higher ratings than their smooth, welded tube counterparts. It is apparent that the enhanced surface pattern serves to create a stronger, more rigid tube.

The intersection of lines A and B shows the maximum heat transfer for the Vipertex® enhanced 1EHT tube. In order to obtain the same amount of heat transfer at the point of maximum heat transfer in the 1EHT tube (shown by the intersection of lines A and C), it would require roughly twenty times the flow in a smooth tube. At higher flow rates, there is a 90-100% increase in heat transfer.

Flow Rate
Vipertex® optimal performances produce a more than 500% improvement at Reynolds numbers at 1000. At other flow rates, performance enhancement values of 90-100% are seen.

Two Phase Applications
Vipertex® tubes work extraordinarily well in single phase processes, but also enhance two phase applications
Vipertex® is available in various surface texture options that may, based on other operating conditions, be more appropriate for particular functions, such as evaporators or condensers.

Fouling
Vipertex® enhanced surfaces have heat transfer anti-fouling characteristics for many conditions. Studies have been performed in crude, and once through water. Results show the design of the Vipertex® surface produces a wall shear that cleans the tube surface, allowing less debris to form on the surface.

Charging Substance
Since Vipertex® tubes are produced in a variety of alloy systems, optimization is possible to accommodate a wide variety of charging substances. It is important to consider what substances come in contact with the enhanced surfaces in your heat exchanger. This is helpful in determining a suitable alloy, as well as a suitable enhanced heat transfer pattern.

The increased thermal efficiency of a Vipertex® installation can reduce the amount of charging substance required, which provides the following benefits:
- Less cost to charge
- Less environmental liability in the case of a spill
- Less cost in maintaining a supply of substances that decay through use
- Reduced space required

Temperature Range
Vipertex® enhanced surfaces can be produced in a number of alloy systems that can be optimized for operating temperatures ranging from high temperature to cryogenic, allowing the use of Vipertex® products in a wide variety of conditions.