Enhanced Surfaces for Marine

Space and weight are important considerations for heat exchangers onboard marine vessels. Thanks to thermal efficiency, that can be as much as five fold better than smooth tubes. Units made with Vipertex® enhanced surfaces can be smaller and carry less charging substance than those made of conventional materials. This provides more space for payload and potentially more cruising range.

Consideration should also be given to a Vipertex® design for engine cooling. In the case of watercraft, it is typical to run out of cooling capacity before you run out of horsepower. Theoretically, cruising speed can be increased by cooling engines using Vipertex® technology. Further, cooler engines can run more efficiently, as well.

Potential benefits of Vipertex® in marine applications include:

- Compact units
- Lightweight units
- Higher payload
- Increased engine cooling capacity
- Faster heating & cooling of the cabin
- Extended cruising range
- Reduced operating cost from improved energy efficiency

Vipertex® enhanced surfaces are rolled in coil form, promoting repeatability, volume production and cost efficiency. These surfaces can then be transformed into tube or used in a flat configuration to incorporate into heat exchanger designs with greater flexibility and scalability, helping you optimize a solution for your project.

Whether you are retrofitting an existing installation or building new, let us help you determine the economic value of using Vipertex®.
Pressure Applications
Vipertex® tubes can be applied to exchangers operating at various pressure levels. Different alloy systems, wall thicknesses and processing specifications contribute to the achievement of various pressure ratings.

Burst and collapse tests of welded Vipertex® tubes confirm higher ratings than their smooth, welded tube counterparts. It is apparent that the enhanced surface pattern serves to create a stronger, more rigid tube.

The intersection of lines A and B shows the maximum heat transfer for the Vipertex® enhanced 1EHT tube. In order to obtain the same amount of heat transfer at the point of maximum heat transfer in the 1EHT tube (shown by the intersection of lines A and C), it would require roughly twenty times the flow in a smooth tube. At higher flow rates, there is a 90-100% increase in heat transfer.

Flow Rate
Vipertex® optimal performances produce a more than 500% improvement at Reynolds numbers at 1000. At other flow rates, performance enhancement values of 90-100% are seen.

Two Phase Applications
Vipertex® tubes work extraordinarily well in single phase processes, but also enhance two phase applications. Vipertex® is available in various surface texture options that may, based on other operating conditions, be more appropriate for particular functions, such as evaporators or condensers.

Fouling
Vipertex® enhanced surfaces have heat transfer anti-fouling characteristics for many conditions. Studies have been performed in crude, and once through water. Results show the design of the Vipertex® surface produces a wall shear that cleans the tube surface, allowing less debris to form on the surface.

Charging Substance
Since Vipertex® tubes are produced in a variety of alloy systems, optimization is possible to accommodate a wide variety of charging substances. It is important to consider what substances come in contact with the enhanced surfaces in your heat exchanger. This is helpful in determining a suitable alloy, as well as a suitable enhanced heat transfer pattern.

The increased thermal efficiency of a Vipertex® installation can reduce the amount of charging substance required, which provides the following benefits:
- Less cost to charge
- Less environmental liability in the case of a spill
- Less cost in maintaining a supply of substances that decay through use
- Reduced space required

Temperature Range
Vipertex® enhanced surfaces can be produced in a number of alloy systems that can be optimized for operating temperatures ranging from high temperature to cryogenic, allowing the use of Vipertex® products in a wide variety of conditions.